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A mixture of biquinone (QQn) and bihydroquinone (HHn)
bearing tert-butyl substituents at 5,5¤- (n = 1) and 6,6¤-positions
(n = 2) yields hydroquinonylquinone (HQn) as an equilibrium
product by quinone/hydroquinone exchange. The equilibrium
constants for the formation of HQ1 are higher than those of HQ2
in all solvents. While the exchange between QQ1 and HH1 is
slow, that between HQ1s occurs so rapidly in CDCl3 that it is
observed in phase-sensitive 2DNOESYNMR spectra.

In mixed solution of quinones (Q) and hydroquinones (H),
the exchange of Q and H moieties occurs in the ground1 and
excited states,2 and in mixed crystals.3,4 The reaction proceeds via
a proton-coupled electron-transfer (PCET) mechanism and PCET
reactions have attracted considerable attention as they occur in
various chemical and biochemical processes.5 The Q/H exchange
process is described for both quinone and hydroquinone in
Figure 1. Initially, an electron transfers from H to Q to form a
complex 1£2. Because 1 is more basic than Q and 2 is more
acidic than H, a facile proton transfer follows to give 3 in both
cases. As it is a radical species, 3 can be either be reduced or
oxidized to give 4 and 5, which finally yields H and Q by proton
transfer, respectively. Because it is initiated by an electron
transfer, the Q/H exchange should occur more rapidly in a
mixture of biquinone (QQ) and bihydroquinone (HH) because of
stronger electronacceptor and donor character. We previously
reported that the electronacceptor character of 5,5¤-di-tert-butyl-
2,2¤-biquinone (QQ1) (Chart 1), where tert-butyl groups are
substituted for increasing the stability and solubility, was sig-
nificantly enhanced.6 This is because the first half-wave reduction
potential (¹0.78V in DMF vs. Ag/Ag+) is lower than that of 2,5-
di-tert-butylquinone (¹1.05V). The Q/H exchange was actually
observed in a mixed solution of bi(1,4-naphthoquinone) (NQNQ)
and bi(1,4-hydronaphthoquinone) (NHNH), which gave 2-(1,4-
dihydroxynaphthyl)naphthoquinone (NHNQ) as an equilibrium
product via the exchange of naphthoquinone (NQ) and naphtho-

hydroquinone (NH) moieties, however, no mechanistic study was
performed.7 In this study, the Q/H exchange in mixtures of QQ1
and its hydroquinone derivative, HH1, and their isomers QQ2
and HH2, which bear tert-butyl groups at the 6,6¤-positions, have
been investigated in several solvents.

QQ1, HH2, and QQ2 were prepared according to literature
procedures.6,8 Several synthetic methods of bihydroquinone are
known;9 we chose to synthesize HH1 by demethylation of
tetramethoxybiphenyl that is similar to the synthesis of HH2. For
comparison, 5-tert-butyl-2-(4-tert-butyl-2,5-dimethoxyphenyl)-
p-quinone (MQ1) was synthesized by the oxidation of bromodi-
methoxybenzene 6 using Ce(IV) to give bromoquinone 7
followed by the Suzuki coupling10,11 with arylboronic acid 8
(Figure 2).

All compounds were stable in benzene, chloroform, dichloro-
methane, acetone, and acetonitrile for several days, therefore
1HNMR spectra of the mixtures of QQ1 and HH1, and QQ2 and
HH2 were measured in these solvents. In the mixed solution of
HH1 and QQ1, several new peaks were observed. They were
attributed to 2-(2,5-dihydroxyphenyl)-p-quinone (HQ1), indicat-
ing that Q/H exchange occurred between QQ1 and HH1 (eq 1,
n = 1).

QQnþHHn�Kn
2HQn ðn ¼ 1; 2Þ ð1Þ

The presence of the molecular ion peak of HQ1 (m/z = 328) in
the mass spectrum confirmed the formation of HQ1. All attempts
to isolate HQ1 by chromatography failed and only mixtures of
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Figure 1. Mechanisms of exchange in quinone and hydroquinone.
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HQ1, QQ1, and HH1, were detected, thus strongly indicating that
HQ1 is expected to be an equilibrium product. HQ1 could be
trapped as MQ1 by adding dimethyl sulfate and potassium
carbonate to the mixed solution of QQ1 and HH1; its molecular
structure was determined by comparing with that of the sample
shown in Figure 2. The exchange rate was considerably slow in
all solvents, and it took from a few hours to more than twenty
hours to achieve equilibrium (see Supporting Information15). This
contrasts the mixed solution of duroquinone and durohydroqui-
none, which reaches equilibrium imediately.1a

In all solvents used, HQ1 is present as a major component
and K1 (eq 1, n = 1) is about 1537 (benzene, 23; chloroform,
21, dichloromethane, 15; acetone, 37; acetonitrile, 31). This is
because in nonpolar solvents with small dielectric constants (¾),
there are strong hydrogen bonds between virtually all the
molecules.12 The formation of (HQ1)2 appears to be the most
favorable, because all hydroxy groups form hydrogen bonds
(Figure 3). In contrast, in the hydrogen-bonded complex
(QQ1)(HH1), just two hydroxy groups of HH1 form hydrogen
bonds with the carbonyl groups in QQ1 and the other two
participate in OH/³ interactions as found in 2,2¤-biphenyldiol,13

thus the sum of the interaction energies is less than that of (HQ1)2.
The formation of (HQ1)2 is also advantageous in nonpolar
solvents because the molecules are aligned head-to-tail for the
molecular dipole moments to cancel out. In contrast, (QQ1)(HH1)
is polar. On the other hand, in polar solvents, the molecules are
monomeric because of the small hydrogen-bonding energies,12

therefore in the polar environment, HQ1 should be favorable
compared to QQ1 and HH1 due to its polar character (Figure 3).

Existence of (HQ1)2 is confirmed by phase-sensitive
2DNOESYNMR spectra (303K, mixing time = 0.5 s). As shown
in Figure 4a, the cross peaks arising from the chemical exchange
of the two tert-butyl groups of HQ1 (Figure 4c) were observed
in CDCl3. In contrast, no cross peaks were observed in the
(CD3)2CO solution, as shown in Figure 4b. This result agrees
with the hypothesis that HQ1 exists as a monomer.

The Q/H exchange between HQ1s is so rapid as to be
observable in NMR measurement, which is in marked contrast to
the slow Q/H exchange between QQ1 and HH1. The slow
exchange in the mixed solution of QQ1 and HH1 is sterically
hindered by the tert-butyl groups and the highly twisted ³-planes.
These prohibit the electron transfer in the initial step of the Q/H
exchange. In fact, we previously reported that the torsional angle
of two quinone planes was 38° in the X-ray structure of QQ1;6

thus, QQ1 did not form a charge-transfer (CT) complex with
hydroquinone.14 Nevertheless, a new absorption band was
observed in UVvis spectra of the mixed solution of QQ1 and
HH1, which is attributable to HQ1 on the basis of K1. As shown
in Figure 5, the longest wavelength absorption peak (max) of
HQ1 is red-shifted compared to QQ1 and HH1. It is seen that
max for HQ1 is significantly red-shifted in the less polar solvent
(chloroform) compared to that in acetone. This negative solva-
tochromism indicates that in HQ1, the ground state is more
charge separated than the excited state because of electron transfer
from H to Q; this is expected to allow rapid Q/H exchange in
HQ1. Similar negative solvatochromism is observed in MQ1,
however the shift in max was smaller (19 nm whereas 25 nm in
HQ1) because of the weak electron-donating behavior of the
2,5-dimethoxyphenyl moiety.

The Q/H exchange was also observed in the mixed solution
of QQ2 and HH2 and yielded 2-(2,5-dihydroxyphenyl)-p-
quinone (HQ2). Compared to K1, the values of K2 were low
being about 0.363.1 (benzene, 0.36; chloroform, 0.75, dichloro-
methane, 0.85; acetone, 3.1; acetonitrile, 3.1). The positions of the
tert-butyl groups affect the equilibrium constants, and as steric
repulsions between the tert-butyl groups are negligible in both
intra- and intermolecular processes, it is inferred that solvent
interactions play a critical role. It has been reported that in the
intramolecular cyclization of QQ1 and QQ2,8 the substitution of
bulky tert-butyl groups affects the solvation of the adjacent
substituents.

In conclusion, the Q/H exchange was observed in both the
mixtures of QQ1 and HH1 and QQ2 and HH2 to yield HQ1 and
HQ2, respectively, and HQ1 was generated more favorably than
HQ2 in all solvents. The Q/H exchange was slow between QQ1
and HH1 and considerably fast in the hydrogen-bonded dimer
(HQ1)2 presumably due to the intramolecular electron transfer.
Our future research will focus on the substituent effect on the ratio
[QH]2:[QQ][HH] as well as the exchange rate of intra- and
intermolecular processes.
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Figure 4. 2DNOESY spectra of the mixture of QQ1 and HH1 at 1.2
1.5 ppm in CDCl3 (a) and (CD3)2CO (b), only signals attributed to tert-
butyl groups are shown. Schematic representation of the chemical exchange
of quinone and hydroquinone moieties in (HQ1)2 (c).

Figure 5. UVvis spectra of the mixture of QQ1 and HH1 (purple,
mainly HQ1), QQ1 (red), HH1 (blue), and MQ1 (green) in CHCl3 (a) and
(CH3)2CO (b). max values are 500 (HQ1), 473 (QM1), and 452 nm (QQ1)
in CHCl3, and 475 (HQ1), 454 (QM1), and 448 nm (QQ1) in (CH3)2CO.
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